EVOLUTION OF TRANSIENT THERMAL PROCESSES
IN LAYER COUNTERFLOW APPARATUSES AND
HEAT EXCHANGERS
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Results are given of an analytic investigation of transient processes inside counterflow
apparatuses and heat exchangers with temperature disturbance in one of the heat carriers
at the entry to the apparatus.

Nonstationary heat processes can arise if the operation of a counterflow apparatus is disturbed by
a temperature change at the entry to a heat carrier or its consumption in the apparatus, The evolution of
these processes determines the character as well as the time at which the new stationary state is reached.

The mathematical description of transient states of continuously operating counterflow apparatuses
and heat exchangers has been dealt with in a number of articles [1-3]. In them the main attention was
focused on the calculations of transient heat processes and their characteristics in the output sections of
the heat exchangers only,

In more general cases and in particular in the analysis of the dynamics of processes taking place
inside the apparatuses it is indispensable that one should know the particular features of thermal phenomena
as yet not steady and in intermediate sections fo be able to determine the dynamic characteristics of ap-
paratuses as control objects and to chose the positioning of transducers which control the thermal state,
These particular features can only be established if the corresponding problems are solved,

The following problem is considered below: in a counterflow apparatus for heating dispersion mate~
rial by means of a gas moving through a layer some distribution of temperatures occurs which can either
be nul (at the instant of connecting the apparatus) or it can correspond to some stationary state (operation of
the apparatus prior to the change of state), At the time instant T = 0 the change in temperature of one of the
heat carriers occurs at the entry to the apparatus and from now on it remains constant, It is required to
find temperature changes in time of each heat carrier for any apparatus cross-section,

The following simplifications have been adopted in the formulation of the problem,
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TABLE 1, The Values of Imaginary Roots

M n %in Oap “:'m Cin ~ %n Oen
{ ] }
0 — _ _ _ _ —
0.5 ; - - - - .| =z —
1,0 | 9 - - = - - =
0 —_ — — _ — _
2,0 1| 50971 - — - - -
0 — _ - — _ _
4,0 1 | 56162 - -~ — — —
6.0 0 | 3,8350 5,2260 — — — —
: 1 5.8904 = — - — —
8.0 0 | 3,6097 5,5215 — — — —
, 1 5.9275 10,6393 11,0989 — - —
16.0 o | 3,490 5,6792 — — - —
, 1 59939 | 10,2008 11,5648 — - -
140 0 3,3850 5,8520 10,2458 11,5009 | — —

. 1 6.0723 98311 11,8913 = — —
20.0 0 3,3078 5,9796 9,9452 11,9274 | 16,6957 | 17,7570
, 1 6.1331 9.7622 12,1018 .| 16,4350 | 18,0013 | —
39.0 0 | 3,250 6,0791 9,7560 12,149 | 16,2816 | 18,1978

, 1 6,1817 | 9.6432 12,2576 | - 16,1567 | 18,3191 | 22,7014
5.0 0 | 3,2058 6,1597 9,6184 12,3175 | 16,0344 | 18,4712
L 6,2216 | 95534 12,3805 | 15,9674 | 18,5366 | 22,3862

1, Physical heat properties of the layer material or gas are independent of temperature,

2. The internal heat resistance in portions forming the layer is taken into account by the solidity
coefficient m,,

With the above taken into account one obtains a system of equations which describes a heat exchange:
in the flow of the dispersion material one has

%Z— +m gg =0-—4%, M
and in the gas flow ‘
00
= =0--9. 2
The solution of the system under the conditions
Y=08=0 : 3
Y=Y, 0=1; (4)
Z=0, ¢=0 (5)

describes the process prior to the stationary state and also, as shown by B, N, Devyatov in [1], the transient
process between one stationary state and the next one,

The solution of the problem is obtained by using the operational method, Having taken the Laplace
transformation with respect to the variable Z and having solved the system thus obtained of ordinary dif-
ferential equations for the transform one obtains the formulas
sh (1/32'—/\42 l—)exp [—S— (YO—AY)]

Y, 2m .

SshY T IE + VE— M ch VB

ash(vm_’i)wmch»(;“ml)
m-— 1 Y, | .

= 1
0 =—exp|—

Raaary P[ om Ssh V& — Mt VO — Mich ) & — M
for the transformed temperatures ¢ and 6 where 6 = (1 + m +s/2m)Yyand M = (Yy/vm). By settiag the
denominator equal to zero one obtains the characteristic equations for the roots: hence it follows that one of
the roots is sy = 0 and the other roots can be found from the equation

(6)

_ 0 _ ': .
4= —l— ,-A——Y exp {——- m= ! Y, —Y)’l
s m 2m

v, —}{)] exp[;'ﬂ—z (Yn—Y)], o
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Fig.2. Temperatures of heat carriers along the length of
the heat exchanger for various time instants (m = 0.8; Y,
= 10). Continuous lines correspond to gas; dashed lines
corregpond to material,
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For 6—+M Eq. (8) reduces to
§+l=+M+1=0 (82)

It can easily be seen that (8a) can hold if and only if 6 =—M =-1, Consequently, in the case of M =1 Eq. (8)
has one real root 6 =—1 that is s =—(1 + vm)? = —(1 + Y2,

If, however, 6 = —1 the roots of Eq, (8) can be determined by setting the numerator equal to zero,
that is,

Sshy/ &M+ & —MchY&F—M=0. (8b)
Following [2], Eq, (8b) is transformed and the notation 6 = M ch ¥ infroduced. One obtains then
sh(¥ + Msh¥) = 0. 9)
The roots of Eq, (9) are izn,where n = 6,1,2,3, . ... Inthis case one has
¥ 1 Msh¥ = + inn. (10)
If the quantity ¥ is replaced by its value ¥ = it + i¥ one obtains the system of equations
Mshpcosv = —w; (11
Mchpusinv = —v + ain. (12)

It was established by further analysis that n can only assume a single even value and a single odd
value, for example, 0 and 1, Other values of n do not produce any new roots which would be different from
the caseof n = 0or 1,

It is noticed that the system (11)-(12) has an infinite number of roots. These equations, similarly
as Eq, (10), have also purely imaginary roots (4 = 0) ¥ = ¢ whose number is finite for M # «_, In the case of
M — which corresponds to an infinitely large heating surface, the number of purely imaginary roots tends
to infinity, The results for M — were previously obtained in [4]. When M = 1 the system (19)-(20) of [4]
has for n = 1 the imaginary root ¢ = 7, It can be shown that this root corresponds to the value § = —1; thus,
it is not a multiple root,

Using the information on the roots of the denominator of the expressions (6) and (7) one can deter-
mine the original functions 4 and 0, After some transformations the following expressions are obtained
which describe the transient processes between the first stationary state and the second one or transient
processes related to the setting of the apparatus in motion (for 6 = -1):
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It is not difficult to see that with Z — = the temperature distribution in the apparatus corresponds to
a new stationary state, It is described by the first terms of the expressions (13) and (14) which are identical
with the familiar formulas for counterflow heat exchangers [2]
For the case 6 =~—1 one has to add to the above equations the terms
Y
A - Y
Bo— T e [~y (1 )y
TRl v (I+vm)

]
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Numerical analysis has shown that the infinite series appearing in the expressions (13) and (14) con-~
verge rather slowly especially if the times under consideration are shorter than the time of one of the heat
carriers remaining in the heat exchanger, that is, Z = Y;/m. These cases are also of interest in practice
since they are characteristic for heat exchangers either with small heat surface or with infinitely large
heat surface. In both cases the time required for reaching the new stationary state is close to the time dur-
ing which one of the heat carriers remains in the apparatus.

To facilitate the computations of the transient processes the values of the first six roots of Egs. (10)-
(12)* are shown in Tables 1 and 2 as dependent on M and n,

The comparison of the results of analytic and finite-difference computations was carried out for the
heat carrier temperature at the exit of the apparatus, From now on the change in the temperature of the
latter is adopted as a process stationarity criterion, Figure 1 shows the temperature of the heat carriers
at the exit of the heat exchangers #",where the time during which the material stays in the apparatus was
adopted as a time unit, that is, Tgepn = Z(m/Yy). The quantity 4" was calculated by two independent methods,
These calculations have shown that in our formulation of the problem there are no vibrations in the transient
process; the heat-carrier temperature at the exit from the heat exchanger varies monotonically tending to
attain the level corresponding to the new stationary state, The analysis has established that to determine
the transient process curve for Tgep = 1 it suffices to use 2-3 terms of the series, However, for Tgen <1
the number of terms increases rapidly and for Tgen = 0.25 one must already use 10 terms of the series to
reach a required accuracy. The required accuracy, therefore, can be obtained for Tgen = 1 by using the
series and for Tgen < 1 one should use the formulas (22) and (23) of [4].

In Fig.2 temperature distribution is shown of heat carriers for the case of m = 0,8 and Yy =10 M
=11,2) along the length of the heat exchanger at different time instants, It can be seen from the graph that
the highest initial rate of change and the absolute magnitude of temperature change of the heating and heated
media is observed at the exit of the apparatus (by the less heated heat carrier); as one approaches the entry
to the heat exchanger (along these media) Ad(6) and d¥(6)/dZ become smaller, It is also noticed that in
practice the time needed for establishing the stationary state increases the further one is from the point of
entry of the heating heat carrier whose temperature causes the disturbance,

One usually adopts the time required to reach ¢" = 0.954§,, as the stabilization time of the transient
process. Computations of the latter are shown in Fig.3. It can be seen from the graph that those heat ex-
changers whose water-equivalent ratio is close to unity have the longest stabilization time, For values of
m greater or less than unity the duration of the transient process is reduced, For m—0 the duration of the
transient process approaches zero: in this case the heating of the heat carrier takes place under constant
temperature of the heating medium, For m— the heat exchange stabilizes rapidly since the heat exchange
is concentrated only at the entry portion to the heat exchanger,

*These calculations were carried out on a digital computer by the junior research worker M, V, Raeva,
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NOTATION

are relative temperatures;

are the temperatures of material and gas respectively;

are the same for the initial state;

is the dimensionless time;

is the solidity coefficient;

is the Biot number;

are the heat-exchange coefficients referred to 1 m? surface and
1 m? layer;

is the depth of heat penetration in a portion;

is the portion heat conductivity coefficient;

is the shape coefficient ¢/ = 0 for a plate, v = 1 for a cylinder,

v =2 for a sphere);

are the heat capacities of material and gas respectively;

are the volumetric masses;

are the flow velocities of material and gas;

is the distance from the point of entry to the heating heat carrier;
is the heat-exchanger length;

is the dimensionless coordinate;

is the water equivalent ratio,
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